After reading the SFAC and UNIT instructions the program uses the unit-cell contents and volume to calculate the volume per non-hydrogen atom, which is usually about 18 for typical oganic structures. Condensed aromatic systems can reduce this value (to about 13 in extreme cases) and higher values (20-30) are observed for structures containing heavier elements. The estimated maximum single weight Patterson vector may be useful (in comparison with the Patterson peak-list) in deciding whether the expected heavy atoms are in fact present. However in general the program is rather insensitive to the given unit-cell contents; the assignment of atom types in the E-Fourier recycling (after direct methods when heavier atoms are present) and in the Patterson interpretation do however assume that the elements actually present are those named on the SFAC instructions.
Particularly useful checks are the values of 2-theta(max) and the maximum values of the (unsigned) reflection indices h, k and l; for typical small- molecule data the latter should be a little greater than the corresponding unit-cell dimensions. If not, or if 2-theta(max) does not correspond to the value used in the data collection, there must be an error in the CELL or HKLF instructions, or possibly in the reflection data.
The R(int) value may be used as a test of the Laue group provided that appropriate equivalent reflections have been measured. Generally R(int) should be below 0.1 for the correct assignment. R(sigma) is simply the sum of sigma(F**2) divided by the sum of F**2; a value above 0.1 indicates the the data are very weak or that they have been incorrectly processed.
The mean values of |E**2-1| show whether the E-value distribution for the full data and for the 0kl, h0l and hk0 projections are centric or acentric; this provides a check on the space group assignment, but such statistics may be unreliable if heavy atoms are present (especially when they lie on special positions) or if there are very few reflections in one of these three projections. Twinned structures may give an acentric distribution even when the true space group is centrosymmetric. These numbers may also show up typing errors in the LATT and SYMM instructions; although the program checks the LATT and SYMM instructions for internal consistency, it is not possible to detect all possible errors in this way.
Direct methods is based on the assumption of 'equal resolved atoms'. If the data do not suffice to 'resolve' the atoms from each other, direct methods are doomed to failure. A good empirical test of resolution is to compare the number of reflections 'observed' in the 1.1 to 1.2 Angstrom range with the number theoretically possible (assuming that OMIT is at its default setting of 4) as printed out by the program. If this ratio is less than one half, it is unlikely that the structure will be ever be solved by direct methods. This criterion may be relaxed somewhat for centrosymmetric structures and those containing heavy atoms. It also does not apply to the location of heavy atoms from macromolecular delta-F data because the distances between the 'atoms' are much larger. If the required resolution has not been reached, there is little point in persuing direct methods further; the only hope is to recollect the data with a larger crystal, stronger radiation source, longer measurement times, area detector, real-time profile fitting and lower temperature, or at least as many of these as are simultaneously practicable.
If the data reduction diagnostics give no grounds for suspicion and no direct methods solution gives good figures of merit, a brute force approach should be applied. This takes the form of TREF followed by a large number (e.g. TREF 2000); it may also be necessary to set a larger value for TIME. If either of the methods for interrupting a running job are available (see above), an effectively infinite value may be used (TREF 999999). Any change in this number of phase permutaions will also change the random number sequence employed for the starting phases.
If more than one solution has good R(alpha) and Nqual values, it is possible that the structure has been solved but the program has chosen the wrong solution. The list of one-phase seminvariant signs printed by the program can be used to decide whether two solutions are equivalent or not. In such a case other solutions can be regenerated without repeating the complete job by means of 'TREF -n', where n is a solution code number (in fact the random number seed). Because of the effect of small rounding errors the 'TREF -n' job must be performed on the same computer as the original run. No other parameters should be changed when this option is used.
In cases of pseudosymmetry is may be necessary to modify the E-value normalization (i.e. by increasing the renorm parameter on the ESEL instruction to 0.9, or by setting a non-zero value of axis on the same instruction). E(min) should be set to 1.0 or a little lower in such cases.
When direct methods only reveal a fragment of the structure, it may well be correctly oriented but incorrectly translated relative to the origin. In such cases a non-centrosymmetric triclinic expansion with 'ESEL -1' may enable the symmetry elements and hence the correct translation (and perhaps the correct space group) to be identified.
Finally, if any heavier (than Na) elements are present, automatic Patterson interpretation should be tried ...